Multi-Scale Deep Subspace Clustering With Discriminative Learning

نویسندگان

چکیده

Deep subspace clustering methods have achieved impressive performance compared with other algorithms. However, most existing suffer from the following problems: 1) they only consider global features but neglect local in self-expressiveness learning; 2) discriminative information of each coefficient matrix; 3) ignore useful long-range dependencies and positional feature representation learning. To solve these problems, this paper, we propose a novel multi-scale deep learning (MDSCDL) to obtain high-quality matrix. Specifically, MDSCDL bridges multiple fully-connection layers between encoder decoder learn matrices features, representing more comprehensive relationship among data. By modeling interdependencies matrices, adaptively assigns weights for matrix fuses them convolution operation. Moreover, increase power, introduces coordinate attention mechanism extract Extensive experiments on face object datasets shown superiority several state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering

This paper develops a novel iterative framework for subspace clustering (SC) in a learned discriminative feature domain. This framework consists of two modules of fuzzy sparse SC and discriminative transformation learning. In the first module, fuzzy latent labels containing discriminative information and latent representations capturing the subspace structure will be simultaneously evaluated in...

متن کامل

Deep Sparse Subspace Clustering

In this paper, we present a deep extension of Sparse Subspace Clustering, termed Deep Sparse Subspace Clustering (DSSC). Regularized by the unit sphere distribution assumption for the learned deep features, DSSC can infer a new data affinity matrix by simultaneously satisfying the sparsity principle of SSC and the nonlinearity given by neural networks. One of the appealing advantages brought by...

متن کامل

Deep Subspace Clustering Networks

We present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the “selfexpressiveness” property that has proven effective in traditional subspace clusteri...

متن کامل

Deep Subspace Clustering with Sparsity Prior

Subspace clustering aims to cluster unlabeled samples into multiple groups by implicitly seeking a subspace to fit each group. Most of existing methods are based on a shallow linear model, which may fail in handling data with nonlinear structure. In this paper, we propose a novel subspace clustering method – deeP subspAce clusteRing with sparsiTY prior (PARTY) – based on a new deep learning arc...

متن کامل

Projective Low-rank Subspace Clustering via Learning Deep Encoder

Low-rank subspace clustering (LRSC) has been considered as the state-of-the-art method on small datasets. LRSC constructs a desired similarity graph by low-rank representation (LRR), and employs a spectral clustering to segment the data samples. However, effectively applying LRSC into clustering big data becomes a challenge because both LRR and spectral clustering suffer from high computational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3200482